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Abstract

The current study was designed to investigate the absorption mechanism and identify the possible disposition pathways of
green tea catechins (GTC), including epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin
gallate (EGCG), during their absorption across small intestine by Caco-2 monolayer model. The transport of each GTC from
both apical to basolateral and basolateral to apical directions was measured in the absence and the presence of MK571, an MRF
inhibitor. HPLC and LC/MS were employed to identify the possible metabolites of the four GTC formed during their bidirectional
transport processes. The results indicated that the four GTC showed limited transepithelial absorption with relativiely,small
values. However, significant efflux mediated by MRP was observed during the secretion of GTC, especially the non-gallated
catechins. Methylation and sulfation were the main biotransformation pathways of GTC during their secretion transport and the
efflux of the related metabolites seem to be mediated by MRP.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction echin (EC) are the major active componentsingreentea
(Fig. 1). A series of pharmacological effects, including
Green tea, a popular beverage in many countries, anti-carcinogenesis activity, anti-oxidative activity and
contains catechins (flavan-3-ol) as its major beneficial anti-platelet aggregation activity, had been reported
substancesTakehiko and Mujo, 1997 Among the from both animal and human studies of green tea cate-
catechins, epigallocatechin gallate (EGCG), epigallo- chins (GTC) Katiyar and Mukhtar, 1996; Young et al.,
catechin (EGC), epicatechin gallate (ECG), and epicat- 2002; Duffy et al., 2001l
Although the beneficial effects of GTC are well rec-
"+ Corresponding author. Tel.: +852 2609 6832: ognized, the phgrmacokinetics propeﬂy of GTCis nqt
fax: +852 2603 5295. completely elucidated. Moreover, serious pre-systemic
E-mail addressjoanzuo@cuhk.edu.hk (Z. Zuo). eliminations of GTC had been reported in animals
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Fig. 1. Structures of green tea catechins.

after oral administrationGhen et al., 1997; Zhu etal.,, similar to the gut, Caco-2 cells also express trans-

2000. Due to the unique anatomical location, gut wall porters, such as multi-drug resistance protein (MRP)

may represent an important and highly sensitive site that is involved in the excretion of the conjugated

for orally administered drugs. Recently, a few reports metabolites from cellsHirohashi et al., 2000 It has

on the first pass metabolism of flavonoids demon- also been suggested that metabolism/active efflux in

strated that extensive phase Il metabolism, such asthe small intestine is involved in the poor absorption

glucuronidation, in gut could contribute to the overall of many drugs. The transport and metabolism study of

low oral bioavailability Crespy et al., 1999; Andlauer the tea flavonoid-{)-epicatechin (EC) by the Caco-2

et al., 2000; Walle et al., 20Q1Therefore, it is neces- model suggested an important role of MRP2 in the

sary to investigate whether this is one of the potential bioavailability of EC and possibly other tea flavonoids

factors responsible for the low oral bioavailability (Vaidyanathan and Walle, 20p1 Therefore, the

of GTC. present study aims to investigate the absorption and
Moreover, few studies reported the identification metabolism of GTC during their absorption across the

of metabolites of GTC in small intestine even though small intestine by Caco-2 cell model.

the metabolites of GTC in urine, bile and plasma

were reported Harada et al., 1999; Okushio et al.,

1999; Meng et al., 2001; Kida et al., 200@ne of the 2. Materials and methods

reasons is that it is technically difficult to investigate

the transport and metabolism of GTC in human small 2.1, Materials

intestine. Recently, the human intestinal Caco-2 cell

monolayer model has proven to be the most popularin  (—)-Epicatechin, £)-epigallocatechin, £)-epica-

vitro model to rapidly assess the cellular permeability techin gallate,{)-epigallocatechin gallate, lucifer yel-

of potential drug candidates, to elucidate pathways of low were purchased from Sigma Chemical Co., USA.

drug transport as well as to study the pre-systemic drug MK571 was supplied by Biomol Research Labora-

metabolism in gut Meunier et al., 199p Besides,  tories Inc., USA. Isoquercitrin (1Q), used as inter-
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nal standard for determining the concentration of EC intervals (30, 60, 90, 120, 150, 180 min) during the ex-
and EGCG, was from Carl Roth, Germany. HPLC- periment. Same volume of blank PB®as replaced
grade methanol and acetonitrile were from Labscan to the receiver chamber after each sampling. Samples
Asia Co. Ltd., Thailand. Other chemical reagents used taken from the transport study were then acidified with
were at least of analytical grade. Dulbecco’s mod- ascorbic acid solution, containing 1% ascorbic acid and

ified Eagle’s medium (DMEM), fetal bovine serum
(FBS), 0.05% trypsin—EDTA, penicillin—streptomycin,
and non-essential amino acids were obtained from
Gibco BRL, Life & Technologies, USA. Phosphate-

buffered saline tablets were purchased from Sigma

Chemical Co., USA.
2.2. Methods

2.2.1. Cell culture

Caco-2 cells from the American type culture col-
lection (ATCC) were cultured in Dulbecco’s modified
Eagle’s medium at 37C, supplemented with 10% fe-
tal bovine serum, 1% non-essential amino acids, in
an atmosphere of 5% GCand 90% relative humid-
ity. Cells were subcultured at 80-90% confluence by
trypsinization with 0.05% trypsin—EDTA and plated
onto six-well plates Transwéll inserts (24 mm i.d.,
0.4um pore size, 4.71 chypolycarbonate filter, Corn-
ing Costar Co., NY) coated with a collagen layer at a
density of 3x 10° cells/well and cultured for 21 days
prior to transport experiments. TEER was used to mon-
itor the integrity of the monolayer. Monolayer with
TEER above 60Q cn? (after subtracting the back
group value of the transwell) was employed in the
present study. Caco-2 cells grown in Trans{elt pas-
sage 32-45 were used for the experiment.

2.2.2. Bi-directional transport studies of green tea
catechins

The transport buffer employed in the transport stud-
ies contained 0.01 M of phosphate buffer saline (PBS
which was supplemented with 0.45 M calcium chloride
and 0.4 M potassium chloride and adjusted to pH 6.0.
Transwelf, with Caco-2 cells grown on them for 21
days, were rinsed twice and equilibrated with PBS
transport buffer at 37C for 15 min before the trans-
port experiment. In the bi-directional transport study,
50uM of each GTC in PBSwas loaded into the api-
cal (AP) (1.5ml transport buffer) or basolateral (BL)
(2.6 ml of transport buffer) side, the so-called the donor
side. Aliquots of 0.5 ml samples were taken from the
other side, the so-called receiver side at different time

0.28% HPOy, to reach pH 2.5Chen et al., 1998nd
stored at—80°C until analysis. TheéP,pp Was calcu-
lated as described previouskrfursson and Karlsson,
1991, Ingels et al., 2004

Efflux ratio or secretion ratio was used to evaluate
the extent of effluxi(iang et al., 2000; Eagling et al.,
1999; Faassen et al., 2003 he calculation was per-
formed as the following equation:

Papgaon (mean)

efflux ratio=
Papp, o5 (Me2N)

wherePapp, . (Mean) is the average of the permeability
coefficient from BL to AP,Papp, ., (Mean) the average
of the permeability coefficient from AP to BL.

2.2.3. Transport study of lucifer yellow

Lucifer yellow was commonly employed as a para-
cellular marker for determining the integrity of the
Caco-2 monolayer. The transport studies from apical
side to basalateral side with 0.33 mg/ml of lucifer yel-
low at the apical chamber was performed as described
in Section2.2.2

2.2.4. Inhibition of transport

To investigate the influence of the multi-drug resis-
tant associate protein (MRP) on the transport of the
selected GTC, 50M of MK571 was preloaded at the
apical chambers for 20 min. The bi-directional trans-
port studies in the presence of pM MK571 at the
donor chambers were then performed following the
method described in Sectiéh2.2(Vaidyanathan and
Walle, 200).

2.2.5. HPLC analysis of four green tea catechins

A 175pl sample was spiked with 28 of various
internal standards as described Table 1 ODS
reversed-phase column (4.6mm d250mm,
4.5um, Beckman) was chosen for the separation.
Electrochemical detector (ECD) with potential set
at 1000 mV was used for the detection of GTC. The
specific mobile phase used for the analysis of each
compound was listed ifiable 1
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Table 1

HPLC conditions and internal standards (IS) used for analysis of each catechin

Compounds Flow rate (ml/min) Time (min) Percentageofeacheluent(%) IS
Methanol ACN Buffef

EC 1 0 0 10 90 1Q
15 80 0 20
20 0 10 90

EGC 1 0 0 5 95 EC
20 0 15 85
25 0 5 95

EGCG 1 0 0 10 90 1Q
20 5 25 70
22 0 10 90

ECG 1 Identical mobile phase program as EGCG EC

a 25 mM NakbPOy (pH 2.5).

2.2.6. ldentification of metabolites with LC/MS

For identification of the metabolites of EC, EGCG
and ECG, the gradient began with 10% eluent A (ace-
tonitrile) and 90% eluent B (0.04% formic acid), and
was changed linearly to 30% eluent A and 70% eluent
B in 20 min. Then the gradient was changed back to
10% eluent A and 90% eluent B in 2 min.

The gradient for identification of metabolites of
EGC began with 10% methanol and 90% water with
0.04% formic acid (pH 3.0) and was changed linearly to
60% methanol and 40% water in 15 min and remained

a flow rate of 1 ml/min. Twenty percent of eluent was
introduced into mass spectrometer and the other 80%
was splitted off.

An APl 2000 Triple Quadrupole LC/MS/IMS
spectrometer equipped with two Perkin-Elmer PE-200
series micro-pumps and auto-sampler (Perkin-Elmer,
Norwalk, CT, USA) were used to perform the analysis.
Negative mode was set for the analysis. Other working
mass spectrometer parameters were: orifice voltage,
—82V; ring voltage,—230 V; nebulization gas, 23 psi;
auxiliary gas, 40 psi; nebulizer temperature, 4G0

at this percentage for another 5 min. Then the gradient Possible metabolites of each GTC, including methy-
was changed back to 10% methanol and 90% water lated conjugate, sulfate conjugate, glucuronidated

in the next 2 min followed by equilibrating for another
3min.

ODS reversed-phase column (4.6 mm kd50
mm, 4.5.m, Beckman) was eluted with gradient at

Table 2

conjugate, methylated sulfate conjugate, methy-
lated glucuronidated conjugate, were monitored by
targeting at their related deprotonated molecular
ions.

Papp values of the four catechins with and without the treatment of MK$iZ43)

Transport in the absence of MK571

TransportinthepresenceofM K571

PappE S.D. (x1077 cm/s) Efflux ratio PappE S.D. (x10~7 cm/s) Efflux ratio
AP to BL BL to AP AP to BL BL to AP
EC 1.394+ 0.082 29.96+ 1.24 2155 3.50+£0.22 5.25+0.3% 1.50
EGC 1.49+ 0.13 7.72+ 0.43 518 3.31+0.22 3.33+0.27° 1.01
ECG 0.96+ 0.15 3.86+ 0.73 402 N/A N/A N/A
EGCG 0.83+ 0.24 1.52+ 0.15 183 N/A N/A N/A

N/A: not applicable.

& Pgpp values (AP to BL) in the absence of MK571 are significantly different from that (AP to BL) in the presence of MRSTILQ5).
b Papp values (BL to AP) in the absence of MK571 are significantly different from that (BL to AP) in the presence of MRSTL(5).
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2.2.7. Data analysis 10.00 4
Reported values represent meas.D. (1= 3). Sta-
tistical significant difference was evaluated by Stu-
dent’st-test with a significant level d? < 0.05. 6.00 4

4.00 4

8,00 4

mV

3. Results 2,001

0.00

3.1. Bidirectional transport of four green tea A AR Ao
. 8.00 9.00 10.00 11.00 12.00 13.00
catechins (A) Minutes

When four GTC were loaded to the apical chambers, 1
no significant transepithelial transport of GTC was ob-
served. As shown iTable 2 the Pypp values for the
absorption transport of GTC are similar to that of lu- 600
ciferyellow (1.63+ 0.12x 10~7 cm/s). Due to th@app a00] 2
values which are much less thanx1.0~6 cm/s from E =
the absorption direction of GTC, it is indicated that 2“"\_&“&—&&_‘&
permeability of GTC through lipid bilayer were not fa- 0.00 4
Vorable' WhICh may be aSSOCiated Wlth their IOW Oral h‘fi)(.)< ‘ ‘9:{);) { }I(IT(H.J o 11?()(‘) o ‘IZTIJ(I}I 1,1"(1(‘) o Il4j(1(l I
bioavailability of less than 20%yvee, 1997. In secre- & Minutes
tion transport, all studied GTC exhibited efflux with
non-gallated catechins (EC and EGC) showing more 8091
extensive efflux than the gallated catechins (EGCGand 7001
ECG). The efflux of EC and EGC were almost com- 6.00 4
pletely inhibited by MRP inhibitor (MK571), which 500 4
indicated that MRP might play an important role on ™ 4
the efflux of GTC. 300 1

2.00 4

3.2. Metabolites of EC 1.00 ]

8.00

9.204 O

800 850 9.00 950 10,00 10.50 11.00 11.50 12,00 1250 13.00 13.50

As shown inFig. 2A, in the BL to AP transport (© Minutes
experiment, several metabolites (M1, M2, M3) of EC
were observed in the apical chambers as early as 30 minFig. 2. HPLC/ECD chromatograms of the samples taken from re-
and their amount accumulated for the following 2.5h. ceiver ;ides at thg end of tra_msport e_xperiment. (A) Basal_ loading
However, none of the above metabolites was found in 2"¢ apical sampling. (B) Apical loading and basal sampling. (C)

N . Basal loading and apical sampling in the presence of MK571. M1,

the receiver chamber during the whole process of the 1> \3: metabolites of EC.
AP to BL transport experimenE{g. 2B).

The deprotonated molecular ions of E@/g 298)
and its possible metabolites (EC sulfate conjugai,
369), methylated ECnf/z 303), methylated EC sul- fate conjugate was the major one. Its full scanning
fate conjugater(/z 383), EC glucuronidated conjugate shown inFig. 4indicated the molecular ion of EC sul-
(m/z 465) and methylated EC glucuronidated conju- fate conjugate was a/z369. The predominant prod-
gate (M/z 479)) were targeted by mass spectrometry uct ion of EC sulfate conjugate was its deprotonated
with electrospray ionisation in a negative mode. There- aglycone, EC, ain/z289. Based on the lipophilicities
sults indicated that the metabolites of EC were mainly of the above metabolites, it was speculated that M1,
sulfate conjugate, methylated EC, and methylated sul- M2, M3 could be EC-sulfate, Me-EC-sulfate, Me-EC,
fate conjugate of ECHig. 3A). Among them, EC sul- respectively.
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Fig. 3. LC/MS chromatograms of the samples taken from receiver sides at the end of the transport experiment of EC. (A) Basal loading and
apical sampling. (B) Apical loading and basalateral sampling. EC: epicatechin, EC-sulfate: epicatechin sulfate conjugate, Me-EC: methylated
epicatechin, Me-EC-sulfate: methylated epicatechin sulfate conjugate.



L. Zhang et al. / International Journal of Pharmaceutics 287 (2004) 1-12 7

_55000*
50000
45000+
40000

. 35000

S

sity, cp

30000

In ten

25000

200.9

200004

150001

10000 4

50004

220 240 260 280 300 320 340 360

m/s, amu "
-SO,
[EC sulfate-H] —— 5 [EC-H]
m/z 369 m/z 289

Fig. 4. Mass spectrum of EC sulfate conjugate.

The samples in receiver chambers of the AP to BL ceiver chambers during secretioRiq. 5. In addi-
transport also showed the same types of metabolitestion, none of the above metabolites was found in
formed as that in the apical samples from the BL to AP the receiver chamber during absorption transport (AP
transport Fig. 3B), but with much fewer amount than  to BL).
the later one.

3.4. Metabolites of EGCG and ECG
3.3. Metabolites of EGC
Several metabolites were found at the apical cham-

HPLC/MS analysis using selective ion monitoring bers during secretion transport of EGCG and ECG.
mode (SIM) targeted at the deprotonated molecular ion Identification of the metabolites with HPLC/MS using
of EGC (m/z 305) and possible metabolites of EGC, SIM showed that there were methylated EGCGZ4
which include sulfate conjugate of EG@fz 385), 471), sulfate conjugate of EGC@(z 537) and methy-
methylated EGCr(/z 319), methylated sulfate con- lated sulfate conjugate of EGC@&(z 551) formed in
jugate of EGC in/z 399), EGC glucuronidated con- the apical side after loading the EGCG in the basalat-
jugate M/z 481) and methylated EGC glucuronidated eral side Fig. 6A).
conjugate in/z 495). The results confirmed the occur- For ECG, there were marginal amount of methy-
rence of sulfate conjugate of EGC, methylated EGC lated ECG fn/z 455), sulfate conjugate of ECG
and methylated sulfate conjugate of EGC in the re- (m/z 521) and methylated sulfate conjugate of ECG
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Fig. 5. LC/MS chromatograms of the samples taken from receiver sides at the end of transport experiment of EGC (basal loading and apical
sampling). EGC: epigallocatechin, EGC-sulfate: epigallocatechin sulfate conjugate, Me-EGC: methylated epigallocatechin, Me-EGC-sulfate:
methylated epigallocatechin sulfate conjugate.

(m/z 535) formed in receiver chambers during secre- 4. Discussion
tion transport of ECGKig. 6B). Similarly, none of
the above metabolites was observed at the receiver Several metabolites of GTC generated by Caco-
chambers in absorption transport of both EGCG and 2 cell were identified in the transport experiment.
ECG. They were mainly sulfated and methylated metabo-
lites. Methylation tends to take place at tHeC3H or
3.5. Inhibition transport of metabolites of EC and 4'-OH position of EC Kuhnle et al., 2000; Baba et al.,
EGC 200)). Sulfate conjugate seems to be the major metabo-
lites of EC in humanVaidyanathan and Walle, 202
As demonstrated iRig. 2C, the presence of MK571  while glucuronide was the major metabolite of ECin rat
substantially inhibited the transportation of all the iden- (Vaidyanathan and Walle, 2002; Kuhnle et al., 2000
tified metabolites of EC suggesting that the metabo- Since Caco-2 cell is originated from human, types of
lites of EC might be the substrates of MRP. Similarly, the metabolites formed from the present study were
transport of metabolites of EGC was also inhibited by consistent with the previous findings from human with
MK571 (Fig. 7), indicating that the metabolites of EGC  no glucuronidated metabolites observed for any of the
might be the substrate of MRP as well. studied GTC.
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Fig. 6. LC/MS chromatograms of the samples taken from the receiver sides at the end of transport experiment of EGCG (A) and ECG (B)
(basal loading and apical sampling). EGCG: epigallocatechin gallate, EGCG-sulfate: epigallocatecin gallate sulfate conjugate, Me-EGCG:
methylated epigallocatechin gallate, Me-EGCG-sulfate: methylated epigallocatechin gallate sulfate conjugate, ECG: epicatechin gallate, ECG-
sulfate: epicatechin gallate sulfate conjugate, Me-ECG: methylated epicatechin gallate, Me-ECG-sulfate: methylated epicatechin gallate sulfa
conjugate.
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Fig. 7. LC/MS chromatograms of the samples taken from receiver sides at the end of transport experiment of EGC. (A) Basal loading and apical
sampling. (B) Basal loading and apical sampling in the presence of MK571.
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It has been reported that the metabolites of EGC are that active transcellular transport of gallate catechin
4'-o-methyl EGC, methyl-EG®@-sulfateand EGCsul-  was minimal. Recently, Walle's research group found
fate conjugate in humandleng et al., 2001; Lietal.,  the uptake ofthe ECG, one of the gallate catechins, into
200)). Consistently, the present study also found the the Caco-2 cell increased in the presence of MK571
same type of major metabolites of EGC, i.e. EGC sul- (Vaidyanathan and Walle, 20p3 herefore, MRP may
fate conjugate, methylated EGC and methylated EGC also be involved during secretion transport of gallate
sulfate conjugate formed in Caco-2 cell model. catechin. The reason why non-gallate catechins are

Methylation of EGCG at 40H and 4-OH were preferentially effluxed could be related to higher affin-
previously reported@kushio et al., 1999; Lu et al., ity of ECand EGCto the efflux transporter, which could
2003; Kida et al., 2000 The methyl group was also  be verified by further studies using the specific MRP
found to conjugate at thé’40H of ECG Kida et al., transfected cell system.

2000. Asto the type of metabolites of EGCG and ECG, In summary, the four GTC showed limited transep-
our results are also consistent with previous finding.  ithelial absorption with lowP,pp values, while signifi-

For Caco-2 cell derived from human colon carci- cant efflux mediated by MRP was found especially for
noma, expression of human phase | and phase Il metab-non-gallated catechins during secretion. Methylation
olizing enzymes has been verified in this cell ligai6 and sulfation biotransformation of GTC were the ma-
et al., 2002. Therefore, the metabolites found in the jor metabolic pathways during their secretion transport
present study indicated that similar types of metabolism across Caco-2 cell.
of GTC might also be found in human small intestine.
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